| Appendix H | | | Symbol | Definition | Dimensions | |-------------|---|-----------------|---------------------------|---|---------------------| | Notation | | | d _e | Overtravel of lock
water surface below
lower pool | ft | | Symbol | Definition | Dimensions | d_f | Overtravel of lock | ft | | a | Variable cross-
sectional culvert
area | ft ² | OI. | water surface above
upper pool | | | a_{i} | Discrete values for area, a | ft^2 | dz/dt | Rate of change of the chamber surface elevation | ft/sec | | A | Reference cross-
sectional orifice
area | ft^2 | D_c | Lock chamber depth | ft | | | | | \mathbf{D}_{h} | Hydraulic diameter | ft | | $A_{\rm c}$ | Reference cross-
sectional culvert
area | ft^2 | D_s | Sill depth | ft | | | | | f | Darcy-Weisbach friction factor | none | | $A_{\rm L}$ | Lock-chamber water-
surface area | ft^2 | g | Gravitational acceleration | ft/sec ² | | A_p | Total port area | ft^2 | $\Delta h_{\text{a-b}}$ | Piezometric head at location <i>a</i> minus | ft | | b | Tainter gate opening (vertical) | ft | | piezometric head at location b | | | b_{g} | Sector gate opening (horizontal) | ft | h | Piezometric head; upper level referenced to the upper sill | ft | | В | Culvert height at valve location | ft | Н | Water-surface
differential (static
pools) | ft | | B_1 | Culvert height in expanded section | ft | ${ m H}_{ m Li}$ | Apparent loss of total head in system "i". Note: | ft | | B_1^* | Effective culvert expansion height | ft | | intake (i=1); upstream
culvert (i=2); valve (i=v);
downstream culvert (i=3);
outflow (i=4); remote
segments (i=5); overall(i=t) | | | c | Slot discharge coefficient | none | | | | | С | Orifice discharge coefficient | none | H_m | Overall inertial effect | ft | | C_c | Contraction coefficient | none | k_{i} | Loss coefficient. Note:
intake (i=1); upstream
culvert (i=2); valve (i=v);
downstream culvert (i=3);
outflow (i=4); remote
segments (i=5); manifold (i=m). | none | | C_L | Overall lock coefficient | none | | | | | d | Draft of vessel | ft | | | | ## EM 1110-2-1604 30 Jun 95 | Symbol | Definition | Dimensions | Symbol | Definition | Dimensions | |----------------|--|------------|----------------------------|---|-------------------------| | k_t | Energy loss coefficient | none | $t_{\rm m}$ | Time at which maximum rate of rise of lock water | sec | | K | Overall valve coefficient (not a loss coefficient) | none | | surface occurs | | | L | Length | ft | t_{v} | Time at which valve is fully open | sec | | L_{m} | Inertial length | ft | T | Operation time | sec | | n | Number of valves used, 1 or 2 | none | V | Velocity in wall culverts through the full open valve | ft/sec | | P_c | Culvert perimeter at the reference section | ft | V | Mean velocity at the reference section | fps | | Q | Flow rate; discharge per culvert | cfs | z | Elevation | ft referred
to datum | | Q_{T} | Total discharge | cfs | Z_{l} | Lower water-surface elevation | ft referred
to datum | | r | Model scale ratio | | Z_r | Culvert roof elevation | ft referred | | R | Reynolds number | none | - _Γ | 0.011,011,010,010 | to datum | | t | Time | sec | $Z_{\scriptscriptstyle U}$ | Upper water-surface elevation | ft referred
to datum | | t _e | Time at which the water
surface reaches overtravel
below lower pool | sec | Z(t) | Lock water-surface elevation at time <i>t</i> | ft referred
to datum | | $\mathbf{t_f}$ | Time at which the water
surface reaches maximum
overtravel above upper poo | sec | α | Flow ratio | none | | | | | υ | Kinematic viscosity | ft ² /sec |